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Abstract

We are interested in the cost of communicating simple, common, non-contiguous data layouts in various
scenarios using the MPI derived datatype mechanism. Our aim is twofold. First, we provide a framework
for studying communication performance for non-contiguous data layouts described with MPI derived data-
types in comparison to baseline performance with the same amount of contiguously stored data. Second, we
explicate natural expectations on derived datatype communication performance that any MPI library imple-
mentation should arguably fulfill. These expectations are stated semi-formally as MPI datatype performance
guidelines.

Using our framework, we examine several MPI libraries on two different systems. Our findings are in
many ways surprising and disappointing. First, using derived datatypes as intended by the MPI standard
sometimes performs worse than the semantically equivalent packing and unpacking with the corresponding
MPI functionality followed by contiguous communication. Second, communication performance with a
single, contiguous datatype can be significantly worse than a repetition of its constituent datatype. Third,
the heuristics that are typically employed by MPI libraries at type-commit time turn out to be insufficient to
enforce the performance guidelines, showing room for better algorithms and heuristics for representing and
processing derived datatypes in MPI libraries. In particular, we show cases where all MPI type constructors
are necessary to achieve the expected performance.

Our findings provide useful information to MPI library implementers, and hints to application program-
mers on good use of derived datatypes. Improved MPI libraries can be validated using our framework and
approach.

Keywords: MPI (Message-Passing Interface), Derived datatypes, Non-contiguous communication,
Benchmarking, Performance guidelines

1. Introduction

The derived or user-defined datatype mechanism is a powerful, integral feature of MPI (the Message-Pass-
ing Interface [2]) that enables communication of structured, possibly non-contiguous and non-homogeneous
(having different constituent basic types) application data with any of the MPI communication operations,
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without the need for tedious, explicit, possibly time- and space-consuming manual packing between inter-
mediate communication buffers [2, Chapter 4].

Characterizing the expected and actual performance of MPI communication with structured, non-con-
tiguous data is a difficult problem that has been addressed in several studies [3, 4, 5]. We extend and
complement this research using a different approach. Non-contiguously stored data have to be sent and
received in a certain, agreed-upon order. This serialization can be, and in applications often is [6], handled
manually by packing and unpacking the data via contiguous, intermediate buffers of elements of basic data-
types in the desired order, upon which MPI communication operations are then performed. Alternatively,
the given non-contiguous data layout and access order can be described by a derived datatype, and the
serialization handled transparently by the MPI library implementation. The promise of a good MPI library
implementation is that the descriptive approach will perform at least as good as or better than the manual
(in time and/or space).

There are three interrelated factors determining the performance of data serialization with the derived
datatype mechanism:

Factor 1 How expensive is serialization per se for given, non-contiguous, (non-)regular data layouts?

Factor 2 How well does a specific MPI library handle serialization with derived datatypes? Does perfor-
mance depend on the type of communication?

Factor 3 How do different derived datatype descriptions of the same layout affect serialization performance?

The first factor has to do with the data layout and access patterns themselves, specifically how well
given patterns and layouts fit the memory (cache) system and can utilize system capabilities (vectorization,
prefetching) and features of the communication system (strided communication). Knowing this would estab-
lish the best possible performance baselines, against which to judge the performance of MPI communication
with structured data. However, because of the essential dependence on system capabilities and access pat-
terns, it does not seem possible to state independent expectations a priori on the costs of processing and
communicating structured data. As performance baseline, we instead compare to communication of the
same amount of consecutively stored elements of the basic datatype(s).

The second factor is in addition determined by the MPI implementation for serializing and communicating
structured layouts. The MPI standard itself does not prescribe how the datatype mechanism has to be
implemented. It does, however, interrelate communication and datatype constructors in a way that makes
it possible to formulate and check concrete, but relative performance expectations. We explain and examine
such expectations in the paper.

The third factor is solely an issue with the quality of the MPI library. With the given MPI datatype
constructors [2, Chapter 4], it is easy to see that any given data layout can be described in an infinite number
of (mostly trivial and irrelevant) ways. However, for many application layouts there are often competing,
non-contrived ways of describing them. We can compare the communication performance with such different
descriptions. Since MPI requires derived datatypes to be committed to the library, it might be sensible to
expect that an MPI library ensures that performance is more or less the same, no matter how the user
chooses to describe the given layout. We will argue in more detail why this is a reasonable expectation, and
discuss why it is difficult to fulfill.

We discuss benchmarking of the MPI derived datatype mechanism in an attempt to characterize both the
“raw performance” of communication with structured data in MPI (Factors 1 and 2), as well as to develop
means for verifying the expected performance of certain uses of the derived datatype mechanism. We focus on
four different (meta) performance guidelines, previously discussed by Gropp et al. [3], but give more precise
formulations and benchmark implementations here. We then use our benchmarks to evaluate concrete MPI
libraries and systems. Our benchmarks are synthetic, but parameterized to make it possible to investigate
patterns that are relevant for applications. Most of the patterns and derived datatype descriptions that are
considered here are natural and deliberately quite simple. Other synthetic patterns, in part derived from
applications, have been used in other studies [4, 5]. The MPI packing and unpacking functionality has often
been compared against derived datatypes, e.g., in the study of Schulz et al. which use derived datatypes for
piggybacking small headers on larger messages [7].
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The capability for transparently communicating structured data is a strong, widely applicable, and
rather unique feature of MPI. It is therefore important to ensure good and consistent derived datatype
communication performance, and to know how current MPI libraries behave. The purpose of this study is
to prevent unrealistic performance expectations, but also to make developers and application programmers
aware of concrete performance problems in given MPI libraries and systems. Much work has been done over
the past decades to improve the communication performance with derived datatypes [8, 9, 10, 11, 12, 13].
For instance, it has been shown, in many different variations, that piece-wise packing of structured layouts
described by derived datatypes can be performed efficiently [9, 12, 13], which is important for efficient
pipelining and overlapping of data accesses and communication. Other developments focused on exploiting
memory hierarchy [8] and communication capabilities for strided, non-contiguous data communication [14].

Many of the experiments in this paper are concerned with Factor 3. The expectation is that MPI libraries
(at the MPI_Type_commit operation) compute a good, internal representation of the user-specified datatype,
which has been termed type normalization [3]. In this paper, we put more emphasis on showing that
strong datatype normalization can have performance advantages. It has recently been shown that optimal
type normalization of derived datatypes into tree-structured representations can be done in polynomial
time [15, 16, 17], but at high cost if all MPI derived datatype constructors are permitted. The latter
two papers show that normalization costs are moderate if the MPI_Type_create_struct constructor is left
out. However, as our last examples show, in order to get the expected performance for certain layouts this
constructor is required, even for homogeneous layouts consisting of data items of the same basic datatype.

The paper is structured in two main parts. In Section 2, the focus is mostly on Factors 1 and 2,
where the communication performance for simple layouts described in simple ways is compared against the
performance with the same amount of contiguous data. In Section 3, we formalize relative performance
expectations as MPI performance guidelines [18], and use them to structure the experiments. We focus on
different descriptions of the same simple layouts as used in the first part, and on the performance of derived
datatypes versus packing and unpacking with the MPI_Pack and MPI_Unpack operations. Further, extensive,
complementary experimental results can be found in our previous work [1, 19].

2. Characterizing Datatype Performance

We first estimate the additional overhead (if any) in communicating non-contiguous data by comparing
to the time for communicating the same amount of data from a contiguous memory buffer. Our primary
focus is on the differences in communication performance caused by different non-contiguous data layouts
(Factor 1), and not on the way that MPI handles such layouts (Factor 2). However, these concerns cannot
be separated. We describe our non-contiguous layouts with MPI derived datatypes, and therefore cannot
distinguish whether overheads are due to the layouts themselves on the given systems, or to the way the
MPI derived datatype mechanism is implemented. In particular, we do not examine any “best possible”
way of communicating non-contiguous data layouts. The reasons for this are twofold. First, as explained it
is not at all obvious what the best possible way to handle communication of given non-contiguous layouts
on different, given systems actually is. Second, the MPI derived datatype mechanism provides capabilities
for optimization that are difficult to exploit at the user-level independently of MPI. For instance, MPI
communication makes it possible to pipeline large non-contiguous buffers by partial packing [9, 12, 13]
and/or to exploit hardware capabilities for non-contiguous data communication.

To establish a baseline performance, we consider non-contiguous, (ir)regularly strided data layouts with
a given serialization order with some given number of elements, N , of some predefined, basic datatype
corresponding to a programming language type, and measure the communication performance for different
n. Each of our layouts can be described as small building blocks of some constant number, k, of elements,
and we first use the “simplest possible” MPI derived datatype descriptions of these layout building blocks.
Each complete, n element layout is then handled as n/k successive, contiguous (in the MPI sense) repetitions
(the count argument in the MPI operations) of these building blocks. The baseline performance delivered
by an MPI library is the time for communicating n contiguous elements of the same basic type. We describe
the basic layouts in Section 2.2.
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Figure 1: Building blocks for the four data layouts with units sizes A = 3, A1 = 2, A2 = 4 and strides B = 5, B1 = 4, B2 = 6.
Serialization of the basetype elements is from left to right. The building blocks are described in a �simplest possible� way with
the MPI datatype constructors as shown.

2.1. Communication Patterns
Derived datatypes can be used with all MPI communication operations, but may perform differently in

different contexts. We therefore benchmark with three different types of communication operations in order
to get an idea of whether this is the case. The n elements are communicated either from a contiguous buffer,
or as a non-contiguous layout described by a derived datatype as outlined above. We use the following
communication operations and patterns:
1. Point-to-point communication with blocking MPI_Send and MPI_Recv operations. The communication

pattern is ping-pong : One MPI process sends data (ping) to another process which sends the received
data back (pong) to the first process; only two processes in the communicator are actively involved. The
same data layout description is used on both sides, that is both processes uses the same derived datatype.

2. The asymmetric (rooted) collective MPI_Bcast on p processes. A chosen root (process 0 in the commu-
nicator) broadcasts its structured data to the other processes which receive the data as the same chosen
data layout. In other words, all processes use the same derived datatype.

3. The symmetric (non-rooted) collective MPI_Allgather on p processes. All processes contribute a buffer
with n elements of the chosen layout, and all processes gather the p contributed data into a p times
larger buffer. Again, all processes use the same derived datatype for both sent and received elements.

We do not benchmark one-sided communication performance with structured data. One reason for this is
that with the one-sided communication model, descriptions of derived datatypes may have to be transferred
between processes, and MPI libraries may differ too much in the way this is handled. We also do not examine
derived datatypes in the context of non-blocking communication operations, neither for point-to-point nor
for collective communication. Non-blocking (and also one-sided communication) operations are methodolog-
ically much more difficult to benchmark, but do provide MPI library implementations with possibilities to
hide some of the costs of handling non-contiguous data. It would be relevant, though, to extend our patterns
to cover both one-sided and non-blocking communication.

2.2. Basic Data Layouts
We consider four non-contiguous data layouts that can all be described as contiguous repetitions of

small building blocks of k elements of a chosen, basic datatype. Each of these building blocks is described
with a corresponding MPI derived datatype constructor. We say that these building block descriptions
are static since they do not depend on the total number of elements n to be communicated, but only on
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Table 1: Fixed unit and stride choices for maximum blocksize C, unit size A with 1 ≤ A ≤ C (cf. Figure 1).

Layout Tiled (A,B) Block (A,B1, B2) Bucket (A1, A2, B) Alternating (A1, A2, B1, B2)

Parameters B = 3C B1 = 2C A1 = A A1 = A
B2 = 4C A2 = 3A A2 = 3A

B = 6C B1 = 3C
B2 = 9C

the structure of the building blocks and the number of elements k in the blocks (in Section 3 we consider
dynamic descriptions that depend on n). The four building blocks consist of contiguous units of basic type
elements with some strides between the units. We use A, A1 and A2 for the number of elements in the units,
and B, B1 and B2 for the strides of the units. The names of the building blocks that we use in the following
are chosen to indicate the structure of the corresponding n element layouts.

Tiled (A,B): A contiguous unit of A elements with a stride of B elements, with B > A. The building block
is constructed using MPI_Type_contiguous with a count of A and a call to MPI_Type_create_resized
to obtain extent B. The building block has k = A elements and an extent of B elements. The Tiled
layout described by repeating this building block is a regularly strided sequence of A element units in
strides of B elements.

Block (A,B1, B2): Two contiguous units of A elements with alternating strides B1 and B2, with B1 6=
B2, and B1, B2 > A. The building block is constructed using MPI_Type_create_indexed_block
and MPI_Type_create_resized. It has k = 2A elements and an extent of B1 + B2 elements. The
corresponding Block layout consists of repeated units of A elements, alternatingly with strides of B1

and B2 elements.

Bucket (A1, A2, B): Two alternating, contiguous units of A1 and A2 elements, with a regular stride of B
elements, with A1 6= A2 and B > A1, A2. This building block is constructed with MPI_Type_indexed,
and has k = A1 + A2 elements and an extent of 2B elements. The Bucket layout is a sequence of
regularly strided buckets, alternatingly with A1 and A2 elements.

Alternating (A1, A2, B1, B2): Two alternating, contiguous units of A1 and A2 elements with strides B1

and B2, respectively, with A1 6= A2, B1 6= B2 and B1, B2 > A1, A2. The building block is described
with MPI_Type_indexed, and has k = A1 + A2 elements and an extent of B1 + B2 elements. The
Alternating layout described by this building block is a sequence of alternating units with A1 and
A2 elements, at alternating strides of B1 and B2 elements.

The four building blocks are illustrated in Figure 1. The building blocks can be constructed over any of
the predefined, basic MPI datatypes. In order to compare same against same in our experiments, we always
choose the strides B,B1, B2 such that the four described n element layouts have the same, total MPI extent.
The restrictions on the strides, e.g., B1 6= B2, ensure that the building blocks describe distinct layouts. For
each building block, we use the most concise, specific MPI datatype constructors to describe the block. It
seems natural to assume that communication performance, regardless of the type of communication, should
not depend on which basic type is used, but only on the amount of data communicated. This assumption
can be tested by using different basic datatypes. The assumption could be violated because of the different
semantics of basic datatypes (doubles, integers, characters), which an MPI library might handle differently.

2.3. Experimental Methodology and Setup
In all our benchmark patterns (ping-pong and collective), we compare different datatypes and/or layouts

for the same total communication volume. We give the communication volume as the number of Bytes m
for some chosen number of elements n of the chosen, basic MPI datatype. We measure only communication
performance, and in all cases exclude the time to set up and commit the derived datatypes. For the MPI
libraries and systems we have had access to, experiments have shown the communication performance to be
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Table 2: Hardware and software used in the experiments.

Machine Name Jupiter JUQUEEN (BlueGene/Q)
Hardware 36 × Dual AMD Opteron 6134 @ 2.3GHz 28 672 × IBM PowerPC A2 @ 1.6GHz

16 cores per node 16 cores per node
In�niBand QDR MT26428 5D Torus interconnect, 40GBps, 2.5 µs latency

MPI Libraries NECMPI-1.3.1, MVAPICH2-2.2, OpenMPI-2.0.1 IBM MPI (based on MPICH2 version 1.5)
Compiler gcc 4.4.7, gcc 4.9.2 (�ags -O3) IBM XL C/C++ for Linux, V12.1 (-O2 -qarch=qp -qtune=qp)

independent of the chosen basic datatype. All results in the following are therefore for the basic datatype
MPI_INT.

We have considered two types of unit and stride parameter choices for the building blocks. In the fixed
variant, a maximum unit size of C elements is chosen, corresponding to some relevant system property, e.g.,
cacheline size. The unit sizes A,A1, A2 can be chosen freely with 1 ≤ A,A1, A2 ≤ C, and the strides are
chosen as multiples of C such that the conditions on the building blocks are fulfilled. In the scaling variant,
an arbitrary, positive unit size A is chosen, and the stride parameters B,B1, B2 (as well as unit sizes A1 and
A2 for the bucket and alternating layouts) are chosen as a function of this A such that the building block
conditions are fulfilled.

In this paper, all our experiments use the fixed variant with C = 16 MPI_INT elements, corresponding
to a cacheline size of 64B (assuming that MPI_INT is 4B). We present results only for A = 1 and A = C,
corresponding to the extreme cases with only one element per cacheline, and with full cachelines. Cacheline
utilization may be an important factor determining the performance of communicating non-contiguous data
layouts (Factor 1). For the choice of C and A, the remainder parameters A1, A2, B,B1, B2 are chosen as
shown in Table 1. With this choice, all n element layouts have the same total MPI extent.

Extensive results for two scaling building block variants can be found in our previous work [1, 19].
Although the absolute times are different, the qualitative findings are similar for both fixed and scaling
building blocks.

Here, we present results for medium and very large communication buffers, m = 256KiB and m =
25.6MB. We have also experimented with small buffer sizes of m = 256B and larger, but these results
have shown no qualitative differences or new effects; some of these results can be found in our previous
work [1, 19].

2.4. Systems and MPI Libraries
The experiments have been conducted on two different systems with different MPI libraries as summa-

rized in Table 2. The first testbed Jupiter is a 36 node Linux cluster, where each node is equipped with two
AMD Opteron 6134 processors. The nodes are interconnected with an InfiniBand QDR network. On this
machine, we have benchmarked the datatype performance of three MPI libraries, namely NECMPI-1.3.1,
MVAPICH2-2.2 and OpenMPI-2.0.1. The benchmarks have been compiled using gcc 4.4.7. We have exam-
ined the datatype performance after compiling with gcc 4.9.2, to check whether the compiler version is an
experimental factor. However, we have not seen any new effects with gcc 4.9.2. Our second testbed is a
BlueGene/Q machine called JUQUEEN , which consists of 28 672 IBM PowerPC A2 nodes interconnected
through a 5D Torus network. We relied on the IBM XL compiler suite provided on JUQUEEN to compile
our benchmarks.

2.5. Benchmarking Communication Patterns
We now explain our benchmarking procedures, in particular, which times have been measured.
When measuring ping-pong latency, we synchronize the MPI processes with an MPI_Barrier call before

each individual ping-pong measurement. The measured ping-pong latency is then defined as the maximum
of the local run-times of the two involved processes. The ping-pong measurement is repeated nrep times
within one mpirun call. We repeat the ping-pong test over r = 5 calls to mpirun on Jupiter and r = 3 calls
to mpirun on JUQUEEN , as mpirun has also been found to be a factor in such experiments [20].
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Since the latency of a ping-pong becomes relatively long for the larger message sizes in our experiments,
we cannot afford to execute many repetitions (large nrep) for every single experiment. In fact, the variance
of the run-time for larger message sizes is relatively small. We therefore choose the number of repetitions
per test case depending on the datasize m:

on Jupiter

nrep =


100 if m ≤ 32 kB,

50 if 32 kB < m ≤ 320 kB,

20 if m > 320 kB.

on JUQUEEN

nrep =


50 if m ≤ 32 kB,

20 if 32 kB < m ≤ 320 kB,

5 if m > 320 kB.
These values of nrep were fixed after analyzing some initial experiments, in which the measurement noise
on the JUQUEEN was comparably smaller.

For each single datatype experiment, we obtain r datasets, each containing nrep measurements. For
each mpirun, we compute the median of the nrep run-times. We then calculate the mean, minimum, and
maximum values over these r median run-times. These values are used in the plots, i.e., the error bars in
the bar graphs denote the minimum and maximum of the r median run-times.

In this paper, we show only results for the ping-pong pattern. Many results for the collective patterns
can be found in our previous work [1, 19]. The ping-pong tests suffice, since qualitative datatype behavior
does not seem to change when going to the collective patterns; but certain effects become more pronounced
due to the higher communication volume and datatype processing effort.

Since whether communication is via shared memory or via the communication network may influence the
datatype performance considerably (Factor 1), in cases where it matters we present ping-pong results both
for MPI processes on the same shared-memory node and on two different nodes. On the JUQUEEN system
there was hardly any difference between the two cases, and for this system we only present the results for
MPI processes on different nodes. We always pin the MPI processes to cores in a round-robin fashion. Thus,
the first two cores of the same CPU are used for the shared-memory experiments, to which we will refer as
the same node configurations. When measuring inter-node communication, i.e., the two nodes configuration,
each process is pinned to core zero on each node.

2.6. Experimental Results
We now summarize our findings that characterize the costs of communicating simple, structured data

layouts in comparison to communicating the same amount of contiguous data.

2.6.1. Expectation Test 1
This is our basic experiment to measure the raw communication performance with the simple, non-con-

tiguous layouts of Figure 1. We use the unit sizes A = 1 and A = 16 (and C = 16), and two different
message sizes, m = 256KiB and m = 25.6MB, with a corresponding number of elements n. We compare to
the baseline performance of ping-pong with a consecutive buffer of n MPI_INT elements.

Expectations. We expect communication with the non-contiguous layouts to be slower than using the
contiguous buffer. We expect this difference to become smaller for the large unit size A = 16 (full cacheline)
and for larger m. We expect communication with the regular Tiled (A,B) building block to be faster
than with the other, more irregular blocks, but do not know in advance how large the difference will be,
neither whether there will be differences between these other layouts. We do not know whether there will be
differences between the MPI libraries and systems, neither in absolute terms nor with respect to the relative
behavior between the layouts.

Results. The results on the two systems are shown in Figure 2 and Figure 3. Results are qualitatively
similar between the two machines and the four different MPI libraries. The Tiled layout indeed exhibits
the best performance among the four non-contiguous layouts, and for NECMPI-1.3.1 it is very close to
the performance with data in a contiguous buffer (even for the large message size). For A = 1, this is
somewhat surprising due to the poor spatial cache-locality of only one MPI_INT per cacheline. The Block
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Figure 2: Exp. Test 1 � Basic data layouts vs. contiguous data, element datatype: MPI_INT, ping-pong, Jupiter .
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Figure 3: Exp. Test 1 � Basic data layouts vs. contiguous data, element datatype: MPI_INT, ping-pong, IBM MPI, JUQUEEN .
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is the most expensive layout in all cases. On the Jupiter system, the three MPI libraries have comparable
baseline (contiguous) performance, but differ considerably in absolute times (with MVAPICH2-2.2 being
particularly slow). The differences between the layouts are prominent for the small unit size parameter
A = 1 and largely disappear for A = 16. In this experiment, as in all following experiments, there is a
large difference between layouts with full cachelines (A = 16) and with only one element per cacheline
(A = 1), the former being faster by often large factors. For all libraries, there is also a noticeable difference
between process configurations with the MPI processes on the same node and on two different nodes;
shared-memory communication and datatype processing is faster. While the performance difference to the
contiguous baseline for the irregular layouts Alternating, Block, and Bucket is only a few factors for the
small message size, this difference becomes very considerable as the message size increases, up to factors
of 60 for NECMPI-1.3.1 and OpenMPI-2.0.1, and 90 for MVAPICH2-2.2 (for A = 1). This cannot be due
solely to the poor cache-locality, since the Tiled (A,B) layout performs well for the NECMPI-1.3.1 library.

3. Performance Guidelines for Derived Datatypes

We now focus on the performance that can be achieved by using different derived datatypes to describe
the same data layout (Factors 2 and 3). We first formulate more precisely what it would be desirable
and defensible to expect, and benchmark with the aim of verifying or falsifying these expectations. Our
expectations take the form of self-consistent performance guidelines [18]. We also discuss more realistic
expectations based on knowledge of how MPI libraries commonly perform improvements to derived datatype
descriptions.

An MPI performance guideline for an MPI operation or an MPI usage states that the operation or
usage should not be slower than certain other, equivalent MPI ways of performing the same operation, for
the same problem size and under the same circumstances. The argument is that if the MPI operation is
slower than an equivalent alternative that implements the same functionality, then the operation could be
replaced with a performance advantage with this alternative implementation. This is clearly something that
an application programmer should not have to do, but should have instead been taken care of by the MPI
library. Verifying such guidelines that interrelate different operations and features of the MPI standard
provides a strong means of verifying that a given MPI implementation is “sane”. Likewise, the verification
of a set of guidelines can give valuable hints to the application programmer on how to best use features
of the given MPI implementation on the system at hand. If some feature does not perform according to
the expectation formalized in the guideline, the guideline tells how to possibly improve the application, and
where the MPI library implementation is in need of improvement.

As discussed, it seems impossible to say anything a priori about the communication performance for
different data layouts. But it is possible to formulate expectations about how the same layout is handled
when it is described with different datatype constructors and different MPI operations.

The MPI standard states that any communication operation with a derived datatype t and repetition
count argument c, c > 1 behaves as if the operation was passed a single repetition of a derived, contiguous
datatype contig(c, t) that describes the c contiguous repetitions of the layout t [2, Section 4.1.11]. A first
datatype performance guideline therefore states that

MPI_X(1, contig(c, t)) � MPI_X(c, t) (GL1)

meaning that no MPI communication operation X in some fixed context should be slower with a contiguous
datatype over basetype t than when called directly with c repetitions of t. If some operation X would be
slower with the contig(c, t) datatype, the user could have done better by not constructing the contiguous
type in the first place. On the other hand, when the contiguous datatype is committed, the MPI library
has more information available than when committing only t (namely a global view of the full layout via
the repetition count c), and this can possibly be exploited to make the left-hand side of Guideline (GL1)
faster. We will see an example at the end of this section where the repetition count reveals structure in
the full layout that can indeed be exploited for a more efficient description. The performance guideline
therefore does not stipulate comparable performance between the two sides (despite what the MPI standard
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may suggest). This guideline (and the following ones) excludes the time for setting up and committing the
derived datatypes t and contig(c, t), and commit time is not measured in our benchmarks.

The next two guidelines state that whatever implicit packing and unpacking of non-contiguous data that
may be necessary inside an MPI communication operation is performed at least as efficiently as explicitly
packing and unpacking the whole communication buffer before and after the communication operation using
the MPI_Pack and MPI_Unpack operations [2, Section 4.2]. Indeed, this expectation is the whole point of the
derived datatype mechanism, and any violation is a serious problem of an MPI library.

For any MPI sending operation X, we would expect the performance of the left-hand side to be at least
as good as the performance of the right-hand side (all other things being equal) in

MPI_X(c, t) � MPI_Pack(c, t) +

MPI_X(1, packed(c, t)) (GL2)

where packed(c, t) denotes the special packing unit of data generated by the MPI_Pack operation (which does
not have to be committed). Similarly for an MPI receiving operation Y :

MPI_Y (c, t) � MPI_Y (1, packed(c, t)) +

MPI_Unpack(c, t) (GL3)

In a good MPI library, we would expect many cases where the left-hand side performs significantly better
than the right-hand side. In particular, the right-hand sides have the disadvantages of (1) requiring an extra
buffer for the intermediate, contiguous packing unit, (2) preventing direct communication of large contiguous
parts of the datatype, and (3) preventing pipelining of packing and unpacking in the communication oper-
ations, as well as all other dynamic optimizations, and optimizations that exploit communication hardware
support. Therefore it should not be recommended to explicitly pack and unpack non-contiguous user data.
We would expect that MPI libraries trivially fulfill these guidelines with equality, and would hope to find
relevant cases where the left-hand sides are much faster than the right-hand sides.

Any data layout can be described in an infinite number of ways with the available MPI datatype con-
structors. This is easy to see; for instance, contig(1, t) describes the same layout as t itself for any datatype
t, and so does therefore contig(1, contig(1, . . . , contig(1, t))). For any given data layout, each MPI library
will have layout descriptions that lead to a best communication performance in a given context. The MPI_-
Type_commit operation provides a handle for the MPI library to transform the datatype given by the user
into a better (if possible), internal description. This process is called datatype normalization [3, 17], and we
call this best, alternative representation of a layout described by datatype t its normalized form normal(t).
The expectation is that an MPI library will indeed attempt to find a good normalized form at MPI_Type_-
commit time (if not, the user could do better by deriving the normalized form by himself and setting up the
datatype in that way), which is formalized as the following datatype normalization performance guideline:

MPI_X(c, t) � MPI_X(c, normal(t)) (GL4)

That is, we would like to expect the performance of a communication operation X with committed datatype
t to be no worse than what can be achieved with any externally normalized description of the layout. The
user may not readily be able to see what the best way to describe a layout in a given situation is, but in many
cases she can give a good guess, and Guideline (GL4) states that we would expect the MPI_Type_commit
operation to do at least as well. Since normal(t) per definition will perform at least as well as t itself in
operation X, and since any two datatype descriptions of the same layout will have the same normalized form,
the guideline states the strong expectation that different datatype descriptions of the same layout, after being
committed to the MPI library, will perform similarly. Instead of coming up with a specific normalized form
for some datatype t, we can evaluate the guideline by examining the performance of different descriptions
of the same layout.

The normalization heuristics typically applied by MPI libraries replace more general type constructors
(struct) with more specific ones (index or index block), collapse nested constructors, and identify large
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contiguous segments, where such replacements are applicable. Explicit descriptions of common type normal-
ization heuristics applied by MPI libraries can be found in papers by Kjolstad et al. [21, 22]. As we will see
in the following, there are natural layout descriptions that are not normalized by these heuristics, leading
to severe violations of the guideline.

Regardless of what an MPI library does in its MPI_Type_commit operation, it is reasonable to expect that
a description of a given layout with a more specific datatype constructor (taking fewer, simpler arguments,
e.g., MPI_Type_vector) in any MPI communication operation context performs no worse than a description
of the layout with a more general, complex constructor (e.g., MPI_Type_create_struct). If that would not
be the case, the user (or library implementer) could simply use the more general constructor, and there
would be no reason for bothering with the more specific constructor. Depending on the regularity of the
layout and the required constructors, this gives rise to a set of of performance guidelines that, when fulfilled,
would assure the user that the most specific, “most natural” constructor for each application layout can
be used with no performance disadvantage. Such guidelines were described previously by Gropp et al. [3].
Specifically, for a regularly strided layout with unit size A and stride B that can be described with the
MPI_Type_vector constructor, it can be expected that

MPI_X(c, MPI_Type_vector(b, A,B, t) � MPI_X(c, MPI_Type_create_indexed_block(b, A, [B], t))

� MPI_X(c, MPI_Type_indexed(b, (A), [B], t))

� MPI_X(c, MPI_Type_create_struct(b, (A), [B], (t))) (GL5)

where (A) denotes an array of size b containing the same unit size A, [B] an array of increasing indices
with stride B, and (t) an array of the datatype t as required by the MPI constructors. With our datatypes
described below we focus on the stronger Guideline (GL4) that subsumes these guidelines.

3.1. Communication Patterns
In our experiments, we use the same three communication patterns operations as in Section 2. In order to

verify Guidelines (GL2) and (GL3), we extend the benchmarks with MPI_Pack and MPI_Unpack operations
to achieve the same semantics as when datatype arguments were used directly in the communication calls:
1. Ping-pong (cf. Schneider et al. [5]): Ping side: MPI_Pack followed by MPI_Send followed by MPI_Recv

followed by MPI_Unpack. Pong side: MPI_Recv followed by MPI_Unpack followed by MPI_Pack followed
by MPI_Send.

2. Asymmetric (rooted) collective, e.g., MPI_Bcast on p processes. Root: MPI_Pack followed by MPI_Bcast.
Non-roots: MPI_Bcast followed by MPI_Unpack.

3. Symmetric (non-rooted) collective, e.g., MPI_Allgather on p processes. All processes call MPI_Pack, fol-
lowed by MPI_Allgather, then all processes perform p successive MPI_Unpack operations on the received,
packed blocks.
In the MPI_Allgather pattern, the successive unpacking of the received blocks is necessary, since the

catenation of packing units is not a packing unit [2, Section 4.2], so even if the received p packed blocks do
form a contiguous piece of memory, it is not correct to unpack it with only one MPI_Unpack operation.

3.2. Experimental Results
The structure of our experiments is guided by the guidelines, and we state for each experiment what our

expectations (hypotheses) are, and comment on whether the results support or falsify them. As baseline we
use the four simple layouts of Section 2. Our basetype is MPI_INT, and the layout parameters and data sizes
are chosen as in the previous section. Also, since the qualitative behavior between the three communication
patterns is similar, we present here only the ping-pong results. Experiments have been done on the same
systems and with the same MPI libraries. We report mostly for the two node configuration, and give the
results for the same node configuration in the cases where there are qualitative differences.

3.2.1. Expectation Test 2
For Guidelines (GL2) and (GL3), we compare the performance of the benchmark with datatype commu-

nication against the benchmark with explicit pack and unpack operations.
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Expectation. We do not expect any MPI library to significantly violate guidelines Guidelines (GL2)
and (GL3), but hope to see cases where an MPI library performs significantly better with datatypes than
with explicit packing and unpacking.
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Figure 4: Exp. Test 2 � Basic data layouts vs. explicit data packing/unpacking, element datatype: MPI_INT, ping-pong, Jupiter .

Results. Much to our surprise, we found many cases where the guidelines are either violated or where there
is no advantage of communicating directly with the derived datatype instead of via explicit packing and
unpacking. The results for the two machines are shown in Figure 4 and Figure 5. For processes on different
nodes, the MVAPICH2-2.2 library violates the guidelines for all layouts when using the large message size,
and there is no performance benefit of using datatypes instead of explicit pack-unpack for 256KiB. Similarly,
the NECMPI-1.3.1 library violates the guidelines for the Alternating, Block, and Bucket layouts with a
message size of 25.6MB and A = 1 element per cacheline size C = 16. OpenMPI-2.0.1 is the only library
that shows a considerable advantage when performing communications directly with the datatype for all
configurations, even though, in absolute terms, NECMPI-1.3.1 performs better in most cases. Datatype
performance over explicit pack-unpack is disappointing for the IBM MPI library, where there is virtually no
difference between the two cases for any layout, regardless of whether A = 1 or A = 16.

3.2.2. Expectation Test 3
As a sanity check for Guideline (GL1), we create a contiguous n/k-element datatype contig(n/k, t) with

the MPI_Type_contiguous constructor for each of the k-element building blocks t described in Section 2.
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Figure 5: Exp. Test 2 � Basic data layouts vs. explicit data packing/unpacking, element datatype: MPI_INT, ping-pong,
IBM MPI, JUQUEEN .

These contiguous types are our first examples of dynamic derived datatypes that can only be set up when
the number of elements n to be communicated is known. We have compared the performance of the two
datatype descriptions of the four layouts against each other in the three communication patterns, but report
results for ping-pong only.

Type description. The concrete Contiguous-subtype is shown in Table 3, Expectation Test 3 with,
e.g., Tiled (A,B) as subtype. The Tiled (A,B) subtype consists of blocks of A elements, and in the
communication patterns n/A such units are communicated. In contrast, the Contiguous-subtype contains
all n/A blocks in a single type, so all n elements are communicated using a count of one with this datatype.

Expectation. Since there is no large scale structure in these simple layouts that can be revealed to the MPI
library by describing the n/k repetitions as a contiguous datatype, we expect no difference in performance
between the reference and compared layouts.
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Figure 6: Exp. Test 3 � Basic layouts vs. Contiguous-subtype, element datatype: MPI_INT, ping-pong, Jupiter .

Results. Results are shown in Figure 6 and Figure 7. Surprisingly, the MVAPICH2-2.2 and OpenMPI-2.0.1
libraries violate the guideline for the Tiled layout (for A = 1), with Contiguous-subtype being a factor
of two to four slower with Tiled (A,B) as subtype. The NECMPI-1.3.1 library behaves as expected in
this test for all four layout building blocks, with no difference between the two different descriptions of
the layouts. Also on JUQUEEN , the Tiled layout severely violates the guideline, both for A = 1 and for
A = 16, and regardless of the message size and node configuration. The other layouts behave as expected.
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Table 3: Overview of expectation tests for the derived datatype performance guidelines.

Exp. Test Reference Layout(s) Compared Layout(s)

2 Tiled, Block same layouts, but using
Bucket, Alternating MPI_Pack and MPI_Unpack

3 Tiled, Block Contiguous with subtypes:
Bucket, Alternating Tiled (A,B), Block (A,B1, B2)

Bucket (A1, A2, B), Alternating (A1, A2, B1, B2)
......

Tiled (A,B)

T1 T1 T1 T1
...

MPI Type contiguous

T1

Tiled (A,B)

A

4 Tiled Tiled-vector

......

Tiled (A,B)

T1 P

MPI Type vector using pattern P

MPI Type create resized

A

5 Tiled Tiled-struct

......

Tiled (A,B)

T1

S1

Tiled (A,B)

MPI Type contiguous

T1 T2

MPI Type create struct

6 Tiled Vector-tiled

......

Tiled (A,B)

P P P P... P

S

MPI Type vector using pattern P

MPI Type hvector

A

7 Block Block-indexed

...

Block (A,B1, B2)

...

block[0] block[1] ...

MPI Type create indexed block

8 Alternating Alternating-indexed

...

Alternating (A1, A2, B1, B2)

...

block[0] block[1] ...

MPI Type indexed

9 Tiled Tiled-struct-indexed

......

Tiled (A,B)

T1 T1 T1
... T2 T2

...

(S − 1) blocks

MPI Type create struct

MPI Type create resized

T2

A

Tiled (A,B)

...T1

(S + 1) blocks

MPI Type indexed
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Figure 7: Exp. Test 3 � Basic layouts vs. Contiguous-subtype, element datatype: MPI_INT, ping-pong, IBM MPI, JUQUEEN .

3.2.3. Expectation Test 4
The remaining expectation tests are concerned with verifying Guideline (GL4). In each of these tests,

we give two different descriptions of the same data layout and measure the communication performance.
We use the four basic layouts for which we now know the baseline performance when described with the
corresponding four building blocks. We compare these against (slightly) more complex descriptions of the
layouts using different constructors and combinations of constructors. Performance Guideline (GL4) states
that we should expect no significant performance difference between these different descriptions, and we are
interested to see how far MPI libraries fulfill this expectation. As explained in Section 1, finding the best
performing normal form for a given derived datatype description is a difficult problem, for which MPI libraries
use only heuristics. We therefore do actually not expect that libraries will always fulfill Guideline (GL4),
and so the tests will reveal the costs of different ways of describing the layouts with alternative uses of the
MPI datatype constructors. In particular, we are interested in descriptions via nested constructors, and in
descriptions via constructors that take (long) explicit arrays of displacements, block counts, and subtypes.
The datatype descriptions used in our expectation tests are summarized in Table 3.

Our first experiment for Guideline (GL4) is a sanity check where we would expect no performance
differences between two natural descriptions of a tiled layout. We describe the Tiled layout as a vector of
n/A contiguous blocks of A elements with stride B. This is the “most natural” way in MPI to describe a
long, regularly strided layout, and is accomplished with the MPI_Type_vector constructor. To get the same
extent of the vector type as the Tiled layout, we resize the extent of the vector to n/A times the extent
of Tiled (A,B). As in the previous expectation test, the Tiled-vector datatype is a dynamic derived
datatype that can only be set up when the number of elements n to be communicated is known. As in all
our experiments, we do not include the datatype setup time in the measured run-time.

Type description. The two contrasted datatype layout descriptions Tiled (A,B) and Tiled-vector are
shown in Table 3, Expectation Test 4.

Expectation. We expect the performance of the two descriptions to match. The MPI internal represen-
tations of the two descriptions are likely to be similar, and concrete offsets for accessing the elements in
the layout can be computed easily by the datatype engine given these representations. Since MPI_Type_-
vector is a commonly used datatype constructor, it may even have been specially optimized, such that the
description as Tiled-vector might be slightly advantageous.

Results. As shown in Figure 8, for the NECMPI-1.3.1 library, the Tiled-vector performs much worse
for A = 1 element per block (and slightly worse for A = 16) than simply repeating the Tiled (A,B) block.
This is a surprising finding of a problem in this particular library. For the other libraries, the performance of
the two descriptions is on par, with the Tiled-vector sometimes being slightly faster. On the JUQUEEN
the two descriptions are completely on par as can be seen in Figure 9.

3.2.4. Expectation Test 5
Our next experiment uses the regularly strided Tiled layout, for which we now know the baseline

communication performance when using the Tiled (A,B) building block. Using MPI_Type_create_struct,
we describe this pattern as a larger block comprised of several Tiled (A,B) subtypes. The test examines
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Figure 8: Exp. Test 4 � Tiled vs. Tiled-vector, element datatype: MPI_INT, ping-pong, Jupiter .
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Figure 9: Exp. Test 4 � Tiled vs. Tiled-vector, element datatype: MPI_INT, ping-pong, IBM MPI, JUQUEEN .
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whether the MPI libraries are able to discover simple regularities in layouts that are described with the
MPI_Type_create_struct constructor.

Type description. The Tiled-struct datatype captures a larger, tiled layout block as a concatenation of
two smaller, contiguously strided layouts of S1 and S2 tiled blocks put together with an MPI_Type_create_-
struct constructor. The description is illustrated in Table 3, Expectation Test 5. Each Tiled sub-layout
has the same blocksize A and stride B. The number of elements in the structure is (S1 + S2)A. We do two
experiments, an “easy” description where the two types have the same number of elements, S1 = S2 = 1,
and a possibly more difficult (for MPI_Type_commit) case with larger, different S1 = 2, S2 = 3.

Expectation. As explained, since the user can easily and with good performance describe the Tiled layout
with Tiled (A,B) building blocks, we would like to expect that the MPI library can similarly detect from
the Tiled-struct description that the underlying pattern is indeed just a simple, tiled pattern. That would
require detecting that both sub-layouts of the MPI_Type_create_struct are tiled (possibly with different
repetition counts, the case where S1 = S2 might be easier) and have the same stride and basetype. However,
the heuristics used by MPI libraries at MPI_Type_commit time usually do not attempt to unify different
subtypes of structured MPI types [21, 22]. Therefore, we might well see cases where the Tiled-struct
description performs worse than the reference layout description.
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Figure 10: Exp. Test 5 � Tiled vs. Tiled-struct, element datatype: MPI_INT, ping-pong, Jupiter .
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Figure 11: Exp. Test 5 � Tiled vs. Tiled-struct, element datatype: MPI_INT, ping-pong, IBM MPI, JUQUEEN .

Results. As can be seen from the results in Figure 10 and Figure 11, none of the MPI libraries discover
the underlying Tiled pattern and normalize the more complex Tiled-struct description. The penalty for
using the complex description is the highest when there is only A = 1 element per block, and when the
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blocks are small, S1 = S2 = 1. For the MVAPICH2-2.2 library, the difference is more than a factor of three,
and for the NECMPI-1.3.1 library even higher, due to the good handling of the Tiled (A,B) blocks by this
library. The IBM MPI exhibits an even higher penalty of up to a factor of 12.

3.2.5. Expectation Test 6
Our next description of the Tiled layout is done using a nested vector. We describe a larger block of a

constant number S of units of A elements with stride B with the MPI_Type_vector constructor. On this
fixed datatype, we build a dynamic vector of c = n/(SA) blocks with a stride of SB elements. In order to
capture the stride correctly, this vector has to be constructed with the MPI_Type_hvector constructor.

Type description. The setup of the nested vector Vector-tiled versus the basic layout Tiled (A,B) is
illustrated in Table 3, Expectation Test 6. We perform experiments with S = 2 and S = 10 blocks in the
innermost vector.

Expectation. We expect that the MPI libraries will detect that the stride for the outer vector is equal to
c times the stride of the inner vector, such that the layout can also be described by a non-nested vector
constructor, and thus recognize that the nested vector datatype description is that of a simple Tiled layout.
The performance of the two descriptions should therefore be similar.
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Figure 12: Exp. Test 6 � Tiled vs. Vector-tiled, element datatype: MPI_INT, ping-pong, Jupiter .
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Figure 13: Exp. Test 6 � Tiled vs. Vector-tiled, element datatype: MPI_INT, ping-pong, IBM MPI, JUQUEEN .

Results. Much to our surprise, only the OpenMPI-2.0.1 seems able to normalize the nested vector into a
flat, single vector or strided representation. This is seen in Figure 12 and Figure 13. For the other libraries,
the case with the small S = 2 inner blocksize performs especially bad, most notably for A = 1 elements.
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The penalty over the simple repetition of Tiled (A,B) is a factor of 3 for MVAPICH2-2.2, but it reaches
a factor of 19 for NECMPI-1.3.1. The same behavior can be observed on the JUQUEEN machine, where
the communication performance with the Vector-tiled layout is up to 10 times worse than when using
Tiled (A,B) for A = 1, regardless of the message size.

3.2.6. Expectation Test 7
The next two experiments are concerned with indexed descriptions of the more irregular Block and

Alternating layouts. In the first experiment, we compare the repeated Block (A,B1, B2) description to
an explicit description of the Block layout by explicitly listing the displacements and number of elements
in all n/k blocks in the n element layouts. This dynamic datatype is set up using the MPI_Type_create_-
indexed_block constructor. The purpose of this experiment and the next is to probe the penalty of having
the MPI library traverse long, explicit lists of displacements and block sizes when processing the data layout
descriptions.

Type description. The Block-indexed layout describes a Block layout with given A,B1, and B2 using
the MPI_Type_create_indexed_block constructor with an array of n/A displacements and a blocksize of
A. Since the block strides alternate between B1 and B2, the block displacements can easily be computed.
This is illustrated in Table 3, Expectation Test 7.

Expectation. A good MPI library should normalize both cases to the same internal datatype representation
with good performance, although it is not obvious what the best such representation might be. A reasonable
expectation is that beyond some number of elements, the large array of displacements in the Block-indexed
datatype will become expensive to traverse, and that simple repetitions of the small, irregular non-contiguous
Block (A,B1, B2) pattern will perform better.
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Figure 14: Exp. Test 7 � Block vs. Block-indexed, element datatype: MPI_INT, ping-pong, Jupiter .

Results. The outcomes of these experiments are different for the different MPI libraries. As seen in Fig-
ure 14, the MVAPICH2-2.2 library behaves most closely to our expectations, with the Block-indexed
description being slower for the large message size. The absolute performance of this library is on the other
hand worse than the two other MPI libraries on Jupiter . The other libraries behave differently, especially
with the IBM MPI it seems much better to use an MPI_Type_create_indexed_block description even
when the index lists are very long, as can be seen in Figure 15. This may be due to normalization into
some particularly efficient internal representation, which unfortunately is not done for the Block (A,B1, B2)
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Figure 15: Exp. Test 7 � Block vs. Block-indexed, element datatype: MPI_INT, ping-pong, IBM MPI, JUQUEEN .

description. Such normalization might have been possible with the Block (A,B1, B2) embedded in a con-
tiguous Contiguous-subtype type, but as can be seen in Expectation Test 3 (Figure 7), the IBM MPI does
not perform any normalization for this type either.

3.2.7. Expectation Test 8
This experiment is similar to the previous one. Here, two descriptions of the “most irregular” of the four

basic layouts, namely Alternating are contrasted.

Type description. The Alternating-indexed datatype describes an Alternating layout with given
A1, A2, B1, and B2, described with the MPI_Type_indexed constructor with n/(A1 + A2) indices and al-
ternating blocksizes of A1 and A2. The data layout is illustrated in Table 3, Expectation Test 8.

Expectation. As for the previous experiment, it is not obvious which of the two descriptions will perform
better. Experimental results will give insight on whether there is a penalty for large arrays of displacements
and blocksizes in the MPI_Type_indexed constructor.

Results. For the large message size, in contrast to the previous experiment, the libraries on Jupiter behave
more as expected, as can be seen in Figure 16, with the Alternating-indexed being slower than the
repeated Alternating (A1, A2, B1, B2) block datatype. The NECMPI-1.3.1 library has a severe problem
for the same node configuration, with the Alternating-indexed datatype being up to a factor 40 slower
than when communicating with the Alternating (A1, A2, B1, B2) datatype for A = 1. This performance
gap increases with the message size and correlates with the difference between the number of L3 cache misses
obtained when communicating with the two datatypes. On JUQUEEN , the behavior is the other way around
and similar to the previous experiment (see Figure 15), with the Alternating-indexed description being
faster that the repeated Alternating (A1, A2, B1, B2) type. This could indicate that MPI_Type_indexed
and MPI_Type_create_indexed_block constructors are treated in the same way by the IBM MPI library.

3.2.8. Expectation Test 9
In our final experiment we present a completely different view of the simple Tiled layout with A elements

and stride B = 3C (as in the previous experiments, with fixed C = 16). For this view, we have to assume
that A > 1, and present our results for A = 2 and A = 16. The tiled layout is viewed as an initial, contiguous
unit of one element, followed by a middle part of n−A elements, followed by a last, contiguous unit of A−1
elements, for a total of n elements. The middle part is again an almost regularly tiled layout, consisting of
first a unit of A− 1 elements with a stride of B − 1, followed by a repetition of regularly strided units of A
elements with stride B, followed by a last unit with only one element. The middle part can be described
using the MPI_Type_indexed constructor with n/A blocks, or, as we do here, as a repetition of smaller
indexed subtypes with fixed number of blocks. The layout description is illustrated in Table 3, Expectation
Test 9. The parameter S determines the number of blocks and elements in the indexed type making up
the middle part. This is S + 1 and SA, respectively. We call this involved description of the tiled layout
Tiled-struct-indexed.

The Tiled-struct-indexed layout description illustrates a number of important points, and poses
non-trivial challenges to MPI type normalization heuristics. First, the almost regularly tiled middle part can
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Figure 16: Exp. Test 8 � Alternating vs. Alternating-indexed, element datatype: MPI_INT, ping-pong, Jupiter .
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Figure 17: Exp. Test 8 � Alternating vs. Alternating-indexed, element datatype: MPI_INT, ping-pong, IBMMPI, JUQUEEN .
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be described either as a) a large MPI_Type_indexed constructed datatype, as b) a repetition of smaller MPI_-
Type_indexed constructed datatypes, or, with the MPI_Type_create_struct constructor, as c) small first
and last units with A−1 and one elements, respectively, and a repeated Tiled (A,B) datatype in the middle.
The latter description, which, due to the large, regular middle part, might lead to better communication
performance, can only be expressed with the MPI_Type_create_struct constructor, even though the layout
itself is homogeneous (using only one and the same element datatype). Concise descriptions of such layouts
thus require a constructor like MPI_Type_create_struct. Good type normalization must be able to detect
the tiled structure in the repetitions of the MPI_Type_indexed constructed datatypes in the middle part of
the Tiled-struct-indexed datatype. This regularity is exposed only when it is known that the indexed
datatype blocks are repeated a large number of times. This is why, in Guideline (GL1), a contig(c, t)
datatype may perform better than giving only datatype t and the count argument c to the communication
operation: A large count in the datatype can expose regularities that can possibly be exploited. Finally,
type normalization must be able to detect that when the almost tiled middle part appears in the context
of the smaller first and last parts, the whole complex datatype is in fact just a description of the simple,
regularly Tiled layout.

Type description. The Tiled-struct-indexed layout description is parameterized in S giving the number
of blocks, S+1, in the indexed datatype making up the middle part. To make it possible to compare directly
with the repetition of Tiled (A,B) with a given number of n elements, the outer MPI_Type_create_struct
constructor takes four blocks, namely a contiguous block of one element, a repetition of the indexed datatype
with S + 1 blocks, a block of A − 1 elements, and a repetition of S − 1 Tiled (A,B) blocks. We have
created versions of Tiled-struct-indexed with A = 2 and A = 16 elements, and with S = 1 and S = 8,
respectively. We verify that this complex datatype actually describes the Tiled layout using the type map
functionality discussed in [23].

Expectation. As stated by Guideline (GL4), the Tiled-struct-indexed layout description should perform
similarly to the best representation of Tiled (A,B). However, commonly used MPI type normalization
heuristics cannot detect that the underlying layout is regularly tiled, and our actual, more realistic expecta-
tion is that the Tiled-struct-indexed will perform worse. The interesting outcome of the experiment is
then rather how much worse the complex description is compared to the natural description as a repetition
of Tiled (A,B) blocks, which effect (if any) the number S + 1 of blocks in the middle part datatype has,
and whether different MPI libraries differ in their handling of such complex descriptions.
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Figure 18: Exp. Test 9 � Tiled vs. Tiled-struct-indexed, element datatype: MPI_INT, ping-pong, Jupiter .
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Figure 19: Exp. Test 9 � Tiled vs. Tiled-struct-indexed, element datatype: MPI_INT, ping-pong, IBM MPI, JUQUEEN .

Results. The results, shown in Figure 18 and Figure 19, compare the two Tiled-struct-indexed datatypes
with S = 1 and S = 8 and unit sizes A = 2 and A = 16 against the simple Tiled (A,B) description of the
tiled layout. On both machines, the complex description is significantly slower than the simple description,
with a factor of about two to four (for A = 2). With the NECMPI-1.3.1 and OpenMPI-2.0.1, a small middle
part subtype S = 1 performs worse than the larger indexed subtype with S = 8, whereas for MVAPICH2-2.2
and IBM MPI the two layout descriptions perform identically. The results clearly show that none of the
MPI libraries are able to find a good internal representation for the complex datatype descriptions.

4. Summary and Discussion

We presented a methodology to assess the quantitative and qualitative behavior of MPI communication
of structured, non-contiguous data with MPI derived datatypes. Our benchmark consists of three commu-
nication patterns, and four basic, parameterizable data layouts. Describing these layouts as small building
block datatypes allows us to assess the MPI data access and communication costs for different communica-
tion patterns and process configurations. The four derived datatype performance guidelines make it possible
to relate the measured performance between different uses of derived datatypes and between different data-
type descriptions of the layouts. A violated performance guideline points to undesirable behavior of an MPI
library. Our benchmark contains a number of different descriptions of the four basic layouts, using different
combinations of MPI datatype constructors in order to investigate the MPI library handling of, e.g., nested
uses of the constructors and the various indexed and struct MPI datatype constructors. For each of these
uses we formulate performance expectations based on the corresponding performance guideline.

We performed a large number of experiments on two different systems and four different MPI libraries,
but reported here only results for the ping-pong communication pattern, although extensively. Although such
results are only transitory, they are nevertheless revealing and in many cases point to concrete problems with
the MPI libraries that should be addressed. Our framework can be used routinely on new library versions and
perhaps guard the application programmer against surprises with the derived datatype performance. For
instance, it was unexpected that Guidelines (GL2) and (GL3) would be violated, but we found many cases
where they were severely compromised. In such cases, the recommendation to the application programmer
to use datatypes is hard to justify. Sometimes, the simplest expectations concerning the use of the MPI_-
Type_contiguous constructor, captured in Guideline (GL1), were severely violated, and also simple uses of
nested vectors were not handled well at all by the libraries (except for OpenMPI-2.0.1). We also observe that
the communication performance with (non-trivial) derived datatypes is quite different between the libraries.
For example, MVAPICH2-2.2 does not handle derived datatypes as efficiently as the other libraries on the
Jupiter system.

Our experiments around Guideline (GL4) show that the way a given layout is described as a derived
datatype matters a lot. Put differently, the heuristics employed by common MPI libraries in MPI_Type_-
commit are insufficient to find good internal datatype representations such that the guideline holds. It is
worthwhile to improve this, since an application programmer needs a very good intuition to select a good
derived datatype description in a given situation. Since the good derived datatype may be different between
different systems and libraries, this is not portable. Simple rules of thumb are not enough: Our findings
sometimes contradicted our own intuitions and expectations, e.g., indexed constructors with very long arrays
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of indices were not as harmful as we thought. Some of the experiments show that datatype descriptions
of small blocks can be too localized to make a sufficiently good normalization possible. We constructed
cases where both the (large) repetition count and the block datatype are needed to reveal a regular overall
structure of the layout. Committing a contiguous type with the repetition count and block datatype gives
the MPI library the possibility to discover such regularities and compute a more efficient, internal datatype
representation, as is expressed in Guideline (GL1). Our experiments showed that libraries do not do this.

Our framework is not concerned with the time used in MPI_Type_commit, and datatype setup time was
not measured. For the usefulness of the derived datatype mechanism, set up time is of course crucial. It
would therefore useful to estimate the amortization point of MPI_Type_commit, that is, how often and how
much must be communicated in order to offset the type set up costs. There is a tradeoff here: Optimal type
normalization (under a simple cost model accounting for space consumption) is time consuming [15]. The
MPI standard currently does not offer any means of influencing what should be done by MPI_Type_commit,
as has often been pointed out [17, 22]. Also, the MPI standard does not give any means of accessing the
internal representation of derived datatypes.
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